

Perfect Information Extensive Form: Strategies, BR, NE

Game Theory Course: Jackson, Leyton-Brown & Shoham

Game Theory Course: Jackson, Leyton-Brown & Shoham Perfect Information Extensive Form: Strategies, BR, NE

Example: the sharing game

How many pure strategies does each player have?

Example: the sharing game

How many pure strategies does each player have?

• player I: 3

Example: the sharing game

How many pure strategies does each player have?

- player I: 3
- player 2: 8

Pure Strategies

• A pure strategy for a player in a perfect-information game is a complete specification of which action to take at each node belonging to that player.

Let $G = (N, A, H, Z, \chi, \rho, \sigma, u)$ be a perfect-information extensive-form game. Then the pure strategies of player i consist of the cross product

 $\prod_{h \in H, \rho(h)=i} \chi(h)$

What are the pure strategies for player 2?

Game Theory Course: Jackson, Leyton-Brown & Shoham Perfect Information Extensive Form: Strategies, BR, NE

What are the pure strategies for player 2?

• $S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$

What are the pure strategies for player 2? • $S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$

What are the pure strategies for player 1?

What are the pure strategies for player 2?

• $S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$

What are the pure strategies for player I?

- $S_1 = \{(B,G); (B,H), (A,G), (A,H)\}$
- This is true even though, conditional on taking A, the choice between G and H will never have to be made

Game Theory Course: Jackson, Leyton-Brown & Shoham

Given our new definition of pure strategy, we are able to reuse our old definitions of:

- mixed strategies
- best response
- Nash equilibrium

- In fact, the connection to the normal form is even tighter
 - we can convert an extensive-form game into normal form

- In fact, the connection to the normal form is even tighter
 - we can convert an extensive-form game into normal form

	CE	CF	DE	DF
$\frac{\gamma}{x}$	3,8	3,8	8,3	8,3
I	3,8	3,8	8,3	8,3
\vec{x}	5, 5	2, 10	5, 5	2, 10
ł	5, 5	1, 0	5, 5	1, 0

- In fact, the connection to the normal form is even tighter
 - we can convert an extensive-form game into normal form

	CE	CF	DE	DF
\vec{x}	3,8	3,8	8,3	8,3
ł	3,8	3,8	8,3	8,3
\vec{x}	5, 5	2, 10	5, 5	2, 10
I	5, 5	1, 0	5, 5	1, 0

- this illustrates the lack of compactness of the normal form
 - games aren't always this small
 - even here we write down 16 payoff pairs instead of 5

- In fact, the connection to the normal form is even tighter
 - we can convert an extensive-form game into normal form

		CE	CF	DE	DF
	Y T	3,8	3,8	8,3	8,3
G = 5,5 = 2,10 = 5,5 = 2,10	Į	3,8	3,8	8,3	8,3
	7 7	5, 5	2, 10	5, 5	2, 10
H = 5,5 = 1,0 = 5,5 = 1,0	I	5, 5	1, 0	5, 5	1, 0

- we can't always perform the reverse transformation
 - e.g., matching pennies cannot be written as a perfect-information extensive form game

- In fact, the connection to the normal form is even tighter
 - we can convert an extensive-form game into normal form

	CE	CF	DE	DF
G	3,8	3,8	8,3	8,3
Ŧ	3,8	3,8	8,3	8,3
G	5, 5	2, 10	5, 5	2, 10
Ŧ	5, 5	1, 0	5, 5	1, 0

Theorem

Every perfect information game in extensive form has a PSNE

This is easy to see, since the players move sequentially.

Game Theory Course: Jackson, Leyton-Brown & Shoham

Perfect Information Extensive Form: Strategies, BR, NE

- In fact, the connection to the normal form is even tighter
 - we can convert an extensive-form game into normal form

	CE	CF	DE	DF
G	3,8	3,8	8,3	8,3
Η	3,8	3,8	8,3	8,3
G	5, 5	2, 10	5, 5	2, 10
Η	5, 5	1,0	5, 5	1,0

• What are the (three) pure-strategy equilibria?

- In fact, the connection to the normal form is even tighter
 - we can convert an extensive-form game into normal form

	CE	CF	DE	DF
G	3,8	3,8	8,3	8,3
Η	3,8	3,8	8,3	8,3
G	5, 5	2, 10	5, 5	2, 10
Η	5, 5	1,0	5, 5	1, 0

- What are the (three) pure-strategy equilibria?
 - (A,G), (C,F)
 - (A, H), (C, F)
 - (B, H), (C, E)